viernes, 12 de febrero de 2010

SWITCH


Store-and-Forward

Los switches Store-and-Forward guardan cada trama en un buffer antes del intercambio de información hacia el puerto de salida. Mientras la trama está en el buffer, el switch calcula el CRC y mide el tamaño de la misma. Si el CRC falla, o el tamaño es muy pequeño o muy grande (un cuadro Ethernet tiene entre 64 bytes y 1518 bytes) la trama es descartada. Si todo se encuentra en orden es encaminada hacia el puerto de salida.

Este método asegura operaciones sin error y aumenta la confianza de la red. Pero el tiempo utilizado para guardar y chequear cada trama añade un tiempo de demora importante al procesamiento de las mismas. La demora o delay total es proporcional al tamaño de las tramas: cuanto mayor es la trama, mayor será la demora.

Cut-Through

Los Switches Cut-Through fueron diseñados para reducir esta latencia. Esos switches minimizan el delay leyendo sólo los 6 primeros bytes de datos de la trama, que contiene la dirección de destino MAC, e inmediatamente la encaminan.

El problema de este tipo de switch es que no detecta tramas corruptas causadas por colisiones (conocidos como runts), ni errores de CRC. Cuanto mayor sea el número de colisiones en la red, mayor será el ancho de banda que consume al encaminar tramas corruptas.

Existe un segundo tipo de switch cut-through, los denominados fragment free, fue proyectado para eliminar este problema. El switch siempre lee los primeros 64 bytes de cada trama, asegurando que tenga por lo menos el tamaño mínimo, y evitando el encaminamiento de runts por la red.

Adaptative Cut-Through

Los switches que procesan tramas en el modo adaptativo soportan tanto store-and-forward como cut-through. Cualquiera de los modos puede ser activado por el administrador de la red, o el switch puede ser lo bastante inteligente como para escoger entre los dos métodos, basado en el número de tramas con error que pasan por los puertos.

Cuando el número de tramas corruptas alcanza un cierto nivel, el switch puede cambiar del modo cut-through a store-and-forward, volviendo al modo anterior cuando la red se normalice.

Los switches cut-through son más utilizados en pequeños grupos de trabajo y pequeños departamentos. En esas aplicaciones es necesario un buen volumen de trabajo o throughput, ya que los errores potenciales de red quedan en el nivel del segmento, sin impactar la red corporativa.

Los switches store-and-forward son utilizados en redes corporativas, donde es necesario un control de errores.

Atendiendo a la forma de segmentación de las sub-redes:

Switches de Capa 2 o Layer 2 Switches

Son los switches tradicionales, que funcionan como puentes multi-puertos. Su principal finalidad es dividir una LAN en múltiples dominios de colisión, o en los casos de las redes en anillo, segmentar la LAN en diversos anillos. Basan su decisión de envío en la dirección MAC destino que contiene cada trama.

Los switches de nivel 2 posibilitan múltiples transmisiones simultáneas sin interferir en otras sub-redes. Los switches de capa 2 no consiguen, sin embargo, filtrar difusiones o broadcasts, multicasts (en el caso en que más de una sub-red contenga las estaciones pertenecientes al grupo multicast de destino), ni tramas cuyo destino aún no haya sido incluido en la tabla de direccionamiento.

Switches de Capa 3 o Layer 3 Switches

Son los switches que, además de las funciones tradicionales de la capa 2, incorporan algunas funciones de enrutamiento o routing, como por ejemplo la determinación del camino basado en informaciones de capa de red (capa 3 del modelo OSI), validación de la integridad del cableado de la capa 3 por checksum y soporte a los protocolos de routing tradicionales (RIP, OSPF, etc)

Los switches de capa 3 soportan también la definición de redes virtuales (VLAN's), y según modelos posibilitan la comunicación entre las diversas VLAN's sin la necesidad de utilizar un router externo.

Por permitir la unión de segmentos de diferentes dominios de difusión o broadcast, los switches de capa 3 son particularmente recomendados para la segmentación de redes LAN muy grandes, donde la simple utilización de switches de capa 2 provocaría una pérdida de rendimiento y eficiencia de la LAN, debido a la cantidad excesiva de broadcasts.

Se puede afirmar que la implementación típica de un switch de capa 3 es más escalable que un router, pues éste último utiliza las técnicas de enrutamiento a nivel 3 y encaminamiento a nivel 2 como complementos, mientras que los switches sobreponen la función de enrutamiento encima del encaminamiento, aplicando el primero donde sea necesario.

Dentro de los Switches Capa 3 tenemos:

Paquete-por-Paquete (Packet by Packet)

Básicamente, un switch Packet By Packet es un caso especial de switch Store-and-Forward pues, al igual que éstos, almacena y examina el paquete, calculando el CRC y decodificando la cabecera de la capa de red para definir su ruta a través del protocolo de enrutamiento adoptado.

Cable UTP


Los cables UTP forman los segmentos de Ethernet y pueden ser cables rectos o cables cruzados dependiendo de su utilización.

1.- Cable recto (pin a pin)

Estos cables conectan un concentrador a un nodo de red (Hub, Nodo). Cada extremo debe seguir la misma norma (EIA/TIA 568A o 568B) de configuracion. La razón es que el concentrador es el que realiza el cruce de la señal.


2.- Cable cruzado (cross-over)

Este tipo de cable se utiliza cuando se conectan elementos del mismo tipo, dos enrutadores, dos concentradores. También se utiliza cuando conectamos 2 ordenadores directamente, sin que haya enrutadores o algún elemento de por medio. Para hacer un cable cruzado se usará una de las normas en uno de los extremos del cable y la otra norma en el otro extremo.
UTP acrónimo de Unshielded Twisted Pair o Cable trenzado sin apantallar. Son cables de pares trenzados sin apantallar que se utilizan para diferentes tecnologías de red local. Son de bajo costo y de fácil uso, pero producen más errores que otros tipos de cable y tienen limitaciones para trabajar a grandes distancias sin regeneración de la señal.

Tarjeta de red


Aunque el término tarjeta de red se suele asociar a una tarjeta de expansión insertada en una ranura interna de un computador o impresora, se suele utilizar para referirse también a dispositivos integrados (del inglés embebed) en la placa madre del equipo, como las interfaces presentes en la videoconsola Xbox o los notebooks. Igualmente se usa para expansiones con el mismo fin que en nada recuerdan a la típica tarjeta con chips y conectores soldados, como la interfaz de red para la Sega Dreamcast, las PCMCIA, o las tarjetas con conector y factor de forma CompactFlash y Secure Digital SIO utilizados en PDAs

Cada tarjeta de red tiene un número de identificación único de 48 bits, en hexadecimal llamado dirección MAC (no confundir con Apple Macintosh). Estas direcciones hardware únicas son administradas por el Institute of Electronic and Electrical Engineers (IEEE). Los tres primeros octetos del número MAC son conocidos como OUI e identifican a proveedores específicos y son designados por la IEEE.

Canaletas


* Fabricadas en P.V.C. Auto Extinguible
* Las canaletas ACME LEÓN PLÁSTICOS LTDA. es la opción más segura, práctica y económica para el tendido de redes eléctricas, de datos, voz y video.
* Fáciles de instalar en el hogar u oficina, sin dañar los muros y paredes.
* Se adaptan a cualquier tipo de requerimiento, llegando a todos los lugares y permitiendo la remodelación y mantenimiento de la red eléctrica.

Patch Cords.


Patch Cord o cable de conexión intermedia se le llama al cable (UTP, F.O., etc) que se usa en una red para conectar un dispositivo electrónico con otro.

Se producen en muchos colores para facilitar su identificación.

En cuanto a longitud, los cables de red pueden ser desde muy cortos (unos pocos centímetros) para los componentes apilados, o tener hasta 6 metros o más. A medida que aumenta la longitud los cables son más gruesos y suelen tener apantallamiento para evitar la perdida de señal y las interferencias (STP).

No existe un conector estándar ya que todo dependerá del uso que tenga el cable.

Aunque esta definición se usa con mayor frecuencia en el campo de las redes informáticas, pueden existir patch cords también para otros tipos de comunicación electrónica.

Los cables de red también son conocidos principalmente por los instaladores como chicote.

Patch Panels



Principal :: Patch Panel
¿Qué es un Patch Panel?



Los llamados Patch Panel son utilizados en algún punto de una red informática donde todos los cables de red terminan. Se puede definir como paneles donde se ubican los puertos de una red, normalmente localizados en un bastidor o rack de telecomunicaciones. Todas las líneas de entrada y salida de los equipos (ordenadores, servidores, impresoras... etc.) tendrán su conexión a uno de estos paneles.

En una red LAN, el Patch Panel conecta entre si a los ordenadores de una red, y a su vez, a líneas salientes que habilitan la LAN para conectarse a Internet o a otra red WAN. Las conexiones se realizan con “patch cords” o cables de parcheo, que son los que entrelazan en el panel los diferentes equipos.
Patch PanelPatch Cord

Los Patch Panel permiten hacer cambios de forma rápida y sencilla conectando y desconectando los cables de parcheo. Esta manipulación de los cables se hará habitualmente en la parte frontal, mientras que la parte de atrás del panel tendrá los cables mas permanentes y que van directamente a los equipos centrales (Switches, Routers, concentradores... etc.).

Los hay de diferentes modelos y pueden ser usados, no solo con datos y teléfonos, sino con aplicaciones de video y audio. El tipo de cable puede ser también variado, desde cable de pares a coaxial y fibra, dependiendo de los elementos que queramos interconectar.

Leer mas artículos relacionados

Productos y Enlaces

Hewlett-Packard - Cables y Adaptadores
En este enlace podrás encontrar cables y adaptadores de todo tipo. Navega por la Web de Hewlett-Packard y encuentra lo que buscas

conectores RJ45


La RJ-45 es una interfaz física comúnmente usada para conectar redes de cableado estructurado, (categorías 4, 5, 5e y 6). RJ es un acrónimo inglés de Registered Jack que a su vez es parte del Código Federal de Regulaciones de Estados Unidos. Posee ocho "pines" o conexiones eléctricas, que normalmente se usan como extremos de cables de par trenzado.

Es utilizada comúnmente con estándares como TIA/EIA-568-B, que define la disposición de los pines o wiring pinout.

Una aplicación común es su uso en cables de red Ethernet, donde suelen usarse 8 pines (4 pares). Otras aplicaciones incluyen terminaciones de teléfonos (4 pines o 2 pares) por ejemplo en Francia y Alemania, otros servicios de red como RDSI y T1 e incluso RS-232.

Concentradores o hubs


Un concentrador o hub es un dispositivo que permite centralizar el cableado de una red y poder ampliarla. Esto significa que dicho dispositivo recibe una señal y repite esta señal emitiéndola por sus diferentes puertos.

Un concentrador funciona repitiendo cada paquete de datos en cada uno de los puertos con los que cuenta, excepto en el que ha recibido el paquete, de forma que todos los puntos tienen acceso a los datos. También se encarga de enviar una señal de choque a todos los puertos si detecta una colisión. Son la base para las redes de topología tipo estrella. Como alternativa existen los sistemas en los que los ordenadores están conectados en serie, es decir, a una línea que une varios o todos los ordenadores entre sí, antes de llegar al ordenador central. Llamado también repetidor multipuerto, existen 3 clases.

* Pasivo: No necesita energía eléctrica. Se dedica a la interconexion.
* Activo: Necesita alimentación. Además de concentrar el cableado, regeneran la señal, eliminan el ruido y amplifican la señal
* Inteligente: También llamados smart hubs son hubs activos que incluyen microprocesador.

Rack o cuarto de comunicaciones


Un cuarto de telecomunicaciones o rack es el área en un edificio utilizada para el uso exclusivo de equipo asociado con el sistema de cableado de telecomunicaciones. El espacio del cuarto de comunicaciones no debe ser compartido con instalaciones eléctricas que no sean de telecomunicaciones. El cuarto de telecomunicaciones debe ser capaz de albergar equipo de telecomunicaciones, terminaciones de cable y cableado de interconexión asociado. El diseño de cuartos de telecomunicaciones debe considerar, además de voz y datos, la incorporación de otros sistemas de información del edificio tales como televisión por cable (CATV), alarmas, seguridad, audio y otros sistemas de telecomunicaciones. Todo edificio debe contar con al menos un cuarto de telecomunicaciones o cuarto de equipo. No hay un límite máximo en la cantidad de cuartos de telecomunicaciones que puedan haber en un edificio. Para ver video haz clic aquí: http://www.youtube.com/watch?v=1HpopUWIVHg Cuarto de Telecomunicaciones